Wild Bootstrap-Based Bias Correction for Spatial Quantile Panel Data Models with Varying Coefficients

نویسندگان

چکیده

This paper studies quantile regression for spatial panel data models with varying coefficients, taking the time and location effects of impacts covariates into account, i.e., implications may change over location. Smoothing methods are employed approximating including B-spline local polynomial approximation. A fixed-effects (FEQR) estimator is typically biased in presence lag variable. The wild bootstrap method to attenuate estimation bias. Simulations conducted study performance proposed show that stable efficient. Further, estimators based on perform much better than those approximation method, especially location-varying coefficients. Real about economic development China also analyzed illustrate application procedure.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Bias Correction in Panel Data Models with Individual Specific Parameters

In random coefficients linear IV models, fixed effects averages of the individual-specific coefficients are biased in short panels due to the finite-sample bias of IV estimators. This paper introduces a new class of bias-corrected semiparametric estimators for panel models where the response to the regressors can be individual-specific in an unrestricted way. These estimators are based on momen...

متن کامل

Censored Quantile Regression with Varying Coefficients

We propose a varying-coefficient quantile regression model for survival data subject to random censoring. Motivated by the work of Yang (1999), quantilebased moments are constructed using covariate-weighted empirical cumulative hazard functions. We estimate regression parameters based on the generalized method of moments. The proposed estimators are shown to be consistent and asymptotically nor...

متن کامل

Identification in Some Random Coefficients Panel Data Models (With Application to Quantile Regression)

This paper considers a random coefficients panel data model with individualspecific intercepts (or fixed effects). The identification of the distribution of random slope coefficients is established in two settings: when random slope coefficients are conditionally independent from individual-specific intercepts; and when individual-specific intercepts are allowed to depend on random slope coeffi...

متن کامل

Bias correction and bootstrap methods for a spatial sampling scheme

Motivated by sampling problems in forestry and related fields, we suggest a spatial sampling scheme for estimating the intensity of a point process. The technique is related to the ‘wandering quarter’ method. In applications where the cost of identifying random points is high relative to the cost of taking measurements, for example when identification involves travelling within a large region, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2023

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math11092005